Login / Signup

Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa.

Nestor Arandia-GorostidiLaura Alonso-SáezHryhoriy StryhanyukHans H RichnowXosé Anxelu G MoránNiculina Musat
Published in: Environmental microbiology (2020)
Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal-derived carbon. Ocean warming might impact dissolved organic carbon (DOC) uptake by microphytoplankton-associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at three different temperatures, we analysed the effect of experimental warming on the abundance and C and N uptake activity of Rhodobacteraceae and Flavobacteria, two bacterial groups typically associated with microphytoplankton. Using a nano-scale secondary ion mass spectrometry (nanoSIMS) single-cell analysis, we quantified the temperature sensitivity of these two taxonomic groups to the uptake of algal-derived DOC in the microphytoplankton associated fraction with 13 C-bicarbonate and 15 N-leucine as tracers. We found that cell-specific 13 C uptake was similar for both groups (~0.42 fg C h-1 μm-3 ), but Rhodobacteraceae were more active in 15 N-leucine uptake. Due to the higher abundance of Flavobacteria associated with microphytoplankton, this group incorporated fourfold more carbon than Rhodobacteraceae. Cell-specific 13 C uptake was influenced by temperature, but no significant differences were found for 15 N-leucine uptake. Our results show that the contribution of Flavobacteria and Rhodobacteraceae to C assimilation increased up to sixfold and twofold, respectively, with an increase of 3°C above ambient temperature, suggesting that warming may differently affect the contribution of distinct copiotrophic bacterial taxa to carbon cycling.
Keyphrases
  • single cell
  • mass spectrometry
  • rna seq
  • stem cells
  • air pollution
  • high resolution
  • particulate matter
  • high performance liquid chromatography