Login / Signup

Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles-Carbon Dots-Multiwalled Carbon Nanotubes Composite-Modified Electrode.

Mengxue LiYiwen KuangZiyan FanXiaoli QinShiyu HuZhanning LiangQilin LiuWeizhong ZhangBirui WangZhaohong Su
Published in: Sensors (Basel, Switzerland) (2022)
Sensitive simultaneous electrochemical sensing of phytohormones indole-3-acetic acid and salicylic acid based on a novel poly(L-Proline) nanoparticles-carbon dots composite consisting of multiwalled carbon nanotubes was reported in this study. The poly(L-Proline) nanoparticles-carbon dots composite was facilely prepared by the hydrothermal method, and L-Proline was used as a monomer and carbon source for the preparation of poly(L-Proline) nanoparticles and carbon dots, respectively. Then, the poly(L-Proline) nanoparticles-carbon dots-multiwalled carbon nanotubes composite was prepared by ultrasonic mixing of poly(L-Proline) nanoparticles-carbon dots composite dispersion and multiwalled carbon nanotubes. Scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy, energy dispersive spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry were used to characterize the properties of the composite. poly(L-Proline) nanoparticles were found to significantly enhance the conductivity and sensing performance of the composite. Under optimal conditions, the composite-modified electrode exhibited a wide linear range from 0.05 to 25 μM for indole-3-acetic acid and from 0.2 to 60 μM for salicylic acid with detection limits of 0.007 μM and 0.1 μM ( S / N = 3), respectively. In addition, the proposed sensor was also applied to simultaneously test indole-3-acetic acid and salicylic acid in real leaf samples with satisfactory recovery.
Keyphrases
  • carbon nanotubes
  • ionic liquid
  • single molecule
  • computed tomography
  • mass spectrometry
  • walled carbon nanotubes