DNA-Templated Bioorthogonal Reactions via Catalytic Hairpin Assembly for Precise RNA Imaging in Live Cells.
Su-Jing ZhaoPing ZhengZhen-Kun WuJian-Hui JiangPublished in: Analytical chemistry (2022)
There has been a significant interest in developing proximity-induced bioorthogonal reactions for nucleic acid detection and imaging, owing to their high specificity and tunable reaction kinetics. Herein, we reported the first design of a fluorogenic sensor by coupling a bioorthogonal reaction with a DNA cascade circuit for precise RNA imaging in live cells. Two DNA hairpin probes bearing tetrazines or vinyl ether caged fluorophores were designed and synthesized. Upon target mRNA triggering catalytic hairpin assembly, the chemical reaction partners were brought in a spatial proximity to yield high effective concentrations, which dramatically facilitated the bioorthogonal reaction efficiency to unmask the vinyl ether group to activate fluorescence. The proposed fluorogenic sensor was demonstrated to have a high signal-to-noise ratio up to ∼30 fold and enabled the sensitive detection of target mRNA with a detection limit of 4.6 pM. Importantly, the fluorogenic sensor presented low background signals in biological environments due to the unique "click to release" feature, avoiding false positive results caused by unspecific degradation. We also showed that the fluorogenic sensor could accurately image mRNA in live cells and distinguish the relative mRNA expression levels in both tumor and normal cells. Benefiting from these significant advantages, our method provides a useful tool for basic studies of bioorthogonal chemistry and early clinical diagnosis.
Keyphrases
- induced apoptosis
- nucleic acid
- cell cycle arrest
- high resolution
- single molecule
- endoplasmic reticulum stress
- air pollution
- machine learning
- small molecule
- signaling pathway
- oxidative stress
- risk assessment
- human immunodeficiency virus
- men who have sex with men
- hiv infected
- mass spectrometry
- loop mediated isothermal amplification
- binding protein
- structural basis
- case control
- label free
- water soluble