Login / Signup

Fluorine Substitution of TCNQ Alters the Redox-Driven Catalytic Pathway for the Ferricyanide-Thiosulfate Reaction.

Anbrah E AlzubidiAlan M BondLisandra L Martin
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2023)
Mechanistic variation in catalysis through substituent-based redox tuning is well established. Fluorination of TCNQ (TCNQ=tetracyanoquinodimethane) provides ~850 mV variation in the redox potentials of the TCNQF n 0 / 1 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {0/1-}}}}$ and TCNQF n 1 - / 2 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {1-/2-}}}}$ (n=0, 2, 4) processes. With TCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ , catalysis of the kinetically very slow ferrocyanide-thiosulfate redox reaction in aqueous solution occurs via a mechanism in which the catalyst TCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ is reduced to TCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ when reacting with S 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ which is oxidised to S 4 O 6 2 - ${{{\rm {S}}}_{{\rm {4}}}{{\rm {O}}}_{{\rm {6}}}^{{\rm {2-}}}}$ . Subsequently, TCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ reacts with [ Fe ( CN ) 6 ]​ 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to form [ Fe ( CN ) 6 ]​ 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ and reform the TCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ catalyst, in another thermodynamically favoured process. An analogous mechanism applies with TCNQF 2 1 - ${{{\rm {TCNQF}}}_{{\rm {2}}}^{{\rm {1-}}}}$ as a catalyst. In contrast, since the reaction of S 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ with TCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ is thermodynamically unfavourable, an alternative mechanism is required to explain the catalytic activity observed in this non-fluorinated system. Here, upon addition of TCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ , reduction of [ Fe ( CN ) 6 ]​ 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to [ Fe ( CN ) 6 ]​ 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ occurs with concomitant oxidation of TCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ to TCNQ 0 ${{{\rm {TCNQ}}}^{{\rm {0}}}}$ , which then acts as the catalyst for S 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ oxidation. Thermodynamic data explain the observed differences in the catalytic mechanisms. CuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) also act as catalysts for the ferricyanide-thiosulfate reaction in aqueous solution. The present study shows that homogeneous pathways are available following addition of these dissolved materials. Previously, these CuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) coordination polymers have been regarded as insoluble in water and proposed as heterogeneous catalysts for the ferricyanide-thiosulfate reaction. Details and mechanistic differences were established using UV-visible spectrophotometry and cyclic voltammetry.
Keyphrases
  • squamous cell carcinoma
  • magnetic resonance imaging
  • computed tomography
  • machine learning
  • nitric oxide
  • artificial intelligence
  • big data
  • highly efficient
  • contrast enhanced
  • organic matter