Login / Signup

Balanced Distribution Adaptation for Metal Oxide Semiconductor Gas Sensor Array Drift Compensation.

Zongze JiangPeng XuYongbin DuFeng YuanKai Song
Published in: Sensors (Basel, Switzerland) (2021)
Drift compensation is an important issue for metal oxide semiconductor (MOS) gas sensor arrays. General machine learning methods require constant calibration and a large amount of label gas data. At the same time, recalibration will cause a lot of costs, and label gas is difficult to obtain in practice. In this paper, a novel drift compensation method based on balanced distribution adaptation (BDA) is proposed. First, the BDA drift compensation method can adjust the conditional distribution and marginal distribution between the two domains through the weight balance factor, thereby more effectively reducing the mismatch between the two domains. When the BDA method performs classification tasks through machine learning, no labeled data is required in the target domain. Then, the particle swarm optimization algorithm is used to improve the accuracy of drift compensation. Individuals in the population are initialized randomly, and their fitness values are calculated. Iterative optimization of the population individuals is conducted until the optimal weight balance factor parameters are calculated. Finally, the BDA method is experimentally verified on the public gas sensor drift data set. Experimental results showed that the BDA method was significantly better than the existing joint distribution adaptation (JDA) method and other standard drift compensation methods such as K-Nearest Neighbor (KNN). In the two setting groups, the recognition accuracy was 4.54% and 1.62% ahead of the JDA method, and 12.23% and 15.83% ahead of the KNN method.
Keyphrases