Development of a Chitosan/PVA/TiO2 Nanocomposite for Application as a Solid Polymeric Electrolyte in Fuel Cells.
Elio Enrique Ruiz GómezJosé Hermínsul Mina HernándezJesús Evelio Diosa AstaizaPublished in: Polymers (2020)
The influence of the incorporation of nanoparticles of titanium oxide (TiO2) at a concentration between 1000 and 50,000 ppm on the physicochemical and mechanical properties of a polymer matrix formed from a binary mixture of chitosan (CS) and polyvinyl alcohol (PVA) at a ratio of 80:20 and the possibility of its use as a solid polymeric electrolyte were evaluated. With the mixture of the precursors, a membrane was formed with the solvent evaporation technique (casting). It was found that the incorporation of the nanoparticles affected the moisture absorption of the material; the samples with the highest concentrations displayed predominantly hydrophobic behavior, while the samples with the lowest content displayed absorption values of 90%. Additionally, thermogravimetric analysis (TGA) showed relatively low dehydration in the materials that contained low concentrations of filler; moreover, differential scanning calorimetry (DSC) showed that the nanoparticles did not significantly affect the thermal transitions (Tg and Tm) of the compound. The ionic conductivity of the compound with a relatively low concentration of 1000 ppm TiO2 nanoparticles was determined by complex impedance spectroscopy. The membranes doped with a 4 M KOH solution demonstrated an increase in conductivity of two orders of magnitude, reaching values of 10-6 S·cm-1 at room temperature in previously dried samples, compared to that of the undoped samples, while their activation energy was reduced by 50% with respect to that of the undoped samples. The voltage-current test in a proton exchange membrane fuel cell (PEMFC) indicated an energy efficiency of 17% and an open circuit voltage of 1.0 V for the undoped compound, and these results were comparable to those obtained for the commercial membrane product Nafion® 117 in evaluations performed under conditions of 90% moisture saturation. However, the tests indicated a low current density in the undoped compound.
Keyphrases
- ionic liquid
- room temperature
- drug delivery
- quantum dots
- solid state
- visible light
- high resolution
- hyaluronic acid
- magnetic resonance imaging
- highly efficient
- cell therapy
- walled carbon nanotubes
- cell proliferation
- magnetic resonance
- african american
- gold nanoparticles
- cell death
- electron microscopy
- signaling pathway
- solid phase extraction
- aqueous solution