Polymer-Dispersed Liquid Crystal Films on Flexible Substrates with Excellent Bending Resistance and Spacing Stability.
Ping YuXianliang ChenDongxia ZhangJianjing GaoCheng MaCuihong ZhangZemin HeDong WangZongcheng MiaoPublished in: Langmuir : the ACS journal of surfaces and colloids (2022)
Polymer-dispersed liquid crystals (PDLCs) are very attractive due to their electrically switchable properties. However, current PDLC films still have problems such as high driving voltages, low contrast ratio (CR), and poor bending resistance and spacing stability. To solve these problems, a PDLC film with a system of coexisting polymer spacer columns and polymer network was proposed. First, based on the adhesive systems of IBMA and UV6301, the effects of IBMA concentration and LC content on the morphology of the polymer network and the electro-optical properties of PDLC were investigated, respectively. Then, the effects of the process conditions of mask polymerization such as temperature, time, and UV light intensity on the morphology and electro-optical properties of the polymer spacer columns were systematically investigated. It was found that PDLC films with the coexistence system exhibit both excellent electro-optical properties and outstanding bending resistance and spacing stability. Thus, it provides new practical possibilities for the preparation of high-performance PDLC films used in flexible devices.