Wavelength-Dependent Charge Carrier Dynamics for Single Pixel Color Sensing Using Graded Perovskite Structures.
N GaneshRavichandran ShivannaRichard Henry FriendKavassery S NarayanPublished in: Nano letters (2019)
We report smart color-sensing devices of two-dimensional lead halide perovskites that exhibit a graded band gap across the film. We observe that the device short-circuit photocurrent is strongly dependent on excitation wavelength λ, and this arises through photoabsorption at different depths in the sample due to the graded bandgaps present. This λ signature in the response of the device is observed in case of steady-state excitation when incident from the high bandgap side of the film, where a complete reversal in the polarity of the photocurrent Iph(t) is obtained as the excitation wavelength is spanned across the visible spectrum. The transient photocurrent reveals λ-specific response arrived from a combination of positive and negative Iph(t) components. The uniqueness of Iph(t) as a function of incident λ can be utilized to examine spectral purity without dispersive optical elements. An equivalent circuit model description provides a possible glimpse into the physical sources involved in contributing to these features.
Keyphrases