Low-Temperature Vibrational Energy Transport via PEG Chains.
Robert T MackinTammy X LeongNatalia I RubtsovaAlexander L BurinIgor V RubtsovPublished in: The journal of physical chemistry letters (2020)
We used relaxation-assisted two-dimensional infrared spectroscopy to study the temperature dependence (10-295 K) of end-to-end energy transport across end-decorated PEG oligomers of various chain lengths. The excess energy was introduced by exciting the azido end-group stretching mode at 2100 cm-1 (tag); the transport was recorded by observing the asymmetric C═O stretching mode of the succinimide ester end group at 1740 cm-1. The overall transport involves diffusive steps at the end groups and a ballistic step through the PEG chain. We found that at lower temperatures the through-chain energy transport became faster, while the end-group diffusive transport time and the tag lifetime increase. The modeling of the transport using a quantum Liouville equation linked the observations to the reduction of decoherence rate and an increase of the mean-free-path for the vibrational wavepacket. The energy transport at the end groups slowed down at low temperatures due to the decreased number and efficiency of the anharmonic energy redistribution pathways.