Login / Signup

High-Switching-Ratio Photodetectors Based on Perovskite CH₃NH₃PbI₃ Nanowires.

Xin ZhangCaichi LiuGang RenShiyun LiChenghao BiQiuyan HaoHui Liu
Published in: Nanomaterials (Basel, Switzerland) (2018)
Hybrid organic-inorganic perovskite materials have attracted extensive attention due to their impressive performance in photovoltaic devices. One-dimensional perovskite CH₃NH₃PbI₃ nanomaterials, possessing unique structural features such as large surface-to-volume ratio, anisotropic geometry and quantum confinement, may have excellent optoelectronic properties, which could be utilized to fabricate high-performance photodetectors. However, in comparison to CH₃NH₃PbI₃ thin films, reports on the fabrication of CH₃NH₃PbI₃ nanowires for optoelectrical application are rather limited. Herein, a two-step spin-coating process has been utilized to fabricate pure-phase and single-crystalline CH₃NH₃PbI₃ nanowires on a substrate without mesoporous TiO₂ or Al₂O₃. The size and density of CH₃NH₃PbI₃ nanowires can be easily controlled by changing the PbI₂ precursor concentration. The as-prepared CH₃NH₃PbI₃ nanowires are utilized to fabricate photodetectors, which exhibit a fairly high switching ratio of ~600, a responsivity of 55 mA/W, and a normalized detectivity of 0.5 × 1011 jones under 532 nm light illumination (40 mW/cm²) at a very low bias voltage of 0.1 V. The as-prepared perovskite CH₃NH₃PbI₃ nanowires with excellent optoelectronic properties are regarded to be a potential candidate for high-performance photodetector application.
Keyphrases
  • room temperature
  • perovskite solar cells
  • ionic liquid
  • emergency department
  • working memory
  • photodynamic therapy
  • climate change