Login / Signup

Kinetics of Hydrogen Abstraction Reactions of Methyl Palmitate and Octadecane by Hydrogen Atoms.

Yawei ChiXiaoqing You
Published in: The journal of physical chemistry. A (2019)
Hydrogen abstractions play a crucial role in the consumption of fuel molecules during fuel pyrolysis and combustion processes. In this study, a generalized energy-based fragmentation approach was used to obtain CCSD(T)-F12a/cc-pVTZ energy barriers of hydrogen abstraction reactions by hydrogen atoms from methyl palmitate (C15H31COOCH3), a key component of biodiesel. The accuracy of M06-2X/6-311++G(d,p) for obtaining the energy barriers was evaluated against the CCSD(T) results. Based on the quantum chemical results, the high-pressure-limit rate constants for C15H31COOCH3 + H were calculated and compared with those of octadecane ( n-C18H38) reacting with H. The treatment of hindered internal rotations for such long-chain molecules was discussed and the rate rules for different abstraction sites were summarized. The results show that in the C15H31COOCH3 + H system, the α hydrogen abstraction no longer plays a dominant role as in small methyl esters, and the hydrogen atoms of CH2 groups far away from the ester group are more easily abstracted than those near the ester group.
Keyphrases
  • visible light
  • room temperature
  • quantum dots