Login / Signup

A Case Study on a Soluble Dibenzothiophene-S,S-dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production: The Film versus the Bulk Material.

Yubo HuYuxiang LiuJun WuYuda LiJia Xing JiangFeng Wang
Published in: ACS applied materials & interfaces (2021)
Most of the traditional polymeric photocatalysts are generally insoluble in organic solvents, which might exclude their compatibility with large-area processing technology. Herein, we have synthesized a novel quaternized ammonium conjugated polyelectrolyte (PSO-FNBr) that can be processed to prepare an active film by a drop-casting method. PSO-FNBr shows a remarkably enhanced hydrogen evolution rate (HER) of 20.5 mmol h-1 g-1 in the thin film form in comparison to that of the powder form. Furthermore, we prepared a new type of thin film-based photocatalytic device, which provided a rare example of a "three-in-one" (rapid sampling + easy-to-use + cost-effective) photocatalytic system. The PSO-FNBr thin film over the Pt substrate can maintain a competitive HER, even though the Pt substrate was recycled and reused 50 times. Considering the features of impressive activity and low cost, we believe that PSO-FNBr will be a promising material for potential application in photocatalysis.
Keyphrases
  • visible light
  • low cost
  • reduced graphene oxide
  • photodynamic therapy
  • ionic liquid
  • room temperature
  • drug delivery
  • water soluble
  • gold nanoparticles
  • drug release
  • human health
  • quantum dots