Transferability of Machine Learning Models for Predicting Raman Spectra.
Mandi FangShi TangZheyong FanYao ShiNan XuYi HePublished in: The journal of physical chemistry. A (2024)
Theoretical prediction of vibrational Raman spectra enables a detailed interpretation of experimental spectra, and the advent of machine learning techniques makes it possible to predict Raman spectra while achieving a good balance between efficiency and accuracy. However, the transferability of machine learning models across different molecules remains poorly understood. This work proposed a new strategy whereby machine learning-based polarizability models were trained on similar but smaller alkane molecules to predict spectra of larger alkanes, avoiding extensive first-principles calculations on certain systems. Results showed that the developed polarizability model for alkanes with a maximum of nine carbon atoms can exhibit high accuracy in the predictions of polarizabilities and Raman spectra for the n -undecane molecule (11 carbon atoms), validating its reasonable extrapolation capability. Additionally, a descriptor space analysis method was further introduced to evaluate the transferability, demonstrating potentials for accurate and efficient Raman predictions of large molecules using limited training data labeled for smaller molecules.