Login / Signup

A New Reversible Phase Transformation of Intermetallic Ti3Sn.

Minshu DuLishan CuiFeng Liu
Published in: Materials (Basel, Switzerland) (2019)
Ti3Sn has received increasing attention as a high damping metallic material and as an anode material for rechargeable lithium-ion batteries. However, a heated dispute concerning the existence of solid state phase transformation of stoichiometric Ti3Sn impedes its development. Here, thermal-induced reversible phase transformation of Ti3Sn is demonstrated to happen at around 300 K by the means of in-situ variable-temperature X-ray diffraction (XRD) of Ti3Sn powder, which is also visible for bulk Ti3Sn on the thermal expansion curve by a turning at 330 K. The new phase's crystal structure of Ti3Sn is determined to be orthorhombic with a space group of Cmcm and the lattice parameters of a = 5.87 Å, b = 10.37 Å, c = 4.76 Å respectively, according to selected area electron diffraction patterns in transmission electron microscope (TEM) and XRD profiles. The hexagonal → orthorhombic phase transformation is calculated to be reasonable and consistent with thermodynamics theory. This work contributes to a growing knowledge of intermetallic Ti3Sn, which may provide fundamental insights into its damping mechanism.
Keyphrases
  • healthcare
  • magnetic resonance imaging
  • computed tomography
  • gold nanoparticles
  • electron microscopy
  • oxidative stress
  • diabetic rats
  • endothelial cells