Highly sensitive and wearable NO2gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4nanosheet composites.
Mohammed KhalifaSrinivasan AnandhanPublished in: Nanotechnology (2021)
In this study, a highly flexible and wearable nitrogen dioxide (NO2) gas sensor was fabricated based on electrospun poly(vinylidene fluoride) (PVDF)/polyaniline (PANi)/graphitic-carbon nitride (g-C3N4) blend nanocomposite (EBNC). g-C3N4/PANi nanocomposite (GPC) was synthesized byin situpolymerization technique prior to its incorporation into PVDF nanofibers, which ensured uniformity of dispersion. For the comparison study, PVDF/GPC nanocomposite film was fabricated using doctor blade technique. EBNC sensor exhibited high sensitivity, selectivity, reproducibility along with quick response and complete recovery. Electrospinning and GPC synergistically improved the performance of the EBNC based gas sensor. The superior gas sensing ability along with its low cost and the use of scalable electrospinning technique could make this system a promising one for the detection of gaseous NO2.