Tuning the Chemical State of Silver on Ag-Mn Catalysts to Enhance the Ozone Decomposition Performance.
Xiaotong LiJinzhu MaHong HePublished in: Environmental science & technology (2020)
Ag-Mn catalysts with excellent water resistance and ozone decomposition activity were successfully synthesized by simple precipitation and impregnation methods. Under a relative humidity of 65% and space velocity of 840,000 h-1, the 6%Ag/α-Mn2O3-I catalyst showed 99% conversion of 40 ppm O3 after 6 h, which was far superior to the performance of the 6%AgMnOx-C (49%), 6%Ag/MnCO3-I (32%), and α-Mn2O3 (5%) catalysts. Physicochemical characterization indicated that the chemical state of Ag on the Ag-Mn catalysts determined the O3 decomposition activity of the catalysts. The Ag species on the 6%Ag/α-Mn2O3-I catalyst were mainly metallic silver nanoparticles (Agn0), which exhibited much better ozone decomposition performance than the Ag1.8Mn8O16 and oxidized silver clusters (Agnδ+) existing on the 6%Ag/MnCO3-I and 6%AgMnOx-C catalysts. The 6%Ag/α-Mn2O3-I catalyst still had above 85% ozone conversion after 60 h under a relative humidity of 65% and space velocity of 840,000 h-1. The slight deactivation of the catalyst was ascribed to the oxidation of Agn0, and its activity could be completely recovered by treatment at 350 °C under an N2 atmosphere, which indicated that it is a promising catalyst for ozone decomposition. This research provides guidance for the subsequent development of Ag-Mn catalysts for ozone decomposition with high activity.