Login / Signup

Dramatic Increase in Polymer Glass Transition Temperature under Extreme Nanoconfinement in Weakly Interacting Nanoparticle Films.

Haonan WangJyo Lyn HorYue ZhangTianyi LiuDaeyeon LeeZahra Fakhraai
Published in: ACS nano (2018)
Properties of polymers in polymer nanocomposites and nanopores have been shown to deviate from their respective bulk properties due to physical confinement as well as polymer-particle interfacial interactions. However, separating the confinement effects from the interfacial effects under extreme nanoconfinement is experimentally challenging. Capillary rise infiltration enables polymer infiltration into nanoparticle (NP) packings, thereby confining polymers within extremely small pores and dramatically increasing the interfacial area, providing a good system to systematically distinguish the role of each effect on polymer properties. In this study, we investigate the effect of spatial confinement on the glass transition temperature ( Tg) of polystyrene (PS) infiltrated into SiO2 NP films. The degree of confinement is tuned by varying the molecular weight of polymers, the size of NPs (diameters between 11 and 100 nm, producing 3-30 nm average pore sizes), and the fill-fraction of PS in the NP films. We show that in these dense NP packings the Tg of confined PS, which interacts weakly with SiO2 NPs, significantly increases with decreasing pore size such that for the two molecular weights of PS studied the Tg increases by up to 50 K in 11 nm NP packings, while Tg is close to the bulk Tg in 100 nm NP packings. Interestingly, as the fill-fraction of PS is decreased, resulting in the accumulation of the polymer in the contacts between nanoparticles, hence an increased specific interfacial area, the Tg further increases relative to the fully filled films by another 5-8 K, indicating the strong role of geometrical confinement as opposed to the interfacial effects on the measured Tg values.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • room temperature
  • photodynamic therapy
  • electron transfer
  • perovskite solar cells
  • mental health
  • gold nanoparticles