Dynamic formation of nanodiamond precursors from the decomposition of carbon suboxide (C3O2) under extreme conditions-A ReaxFF study.
X BidaultNicolas PineauPublished in: The Journal of chemical physics (2018)
We use molecular dynamics simulations with the ReaxFF-lg potential to model the high pressure pyrolysis of carbon suboxide (C3O2) in mixture with argon as a pressure bath. We show that the reactive simulations catch the experimental behavior of the low-pressure detonation of C3O2 (around 10 bars in shock tube experiments) and allow extrapolations to the high-pressure range of solid-state explosive detonation (up to 60 GPa). While at low pressure carbonaceous nanostructures are formed through the aggregation of species such as carbon dimers C2, it appears that the high pressure deeply modifies the process, with the aggregation of growing CxOy heterostructures, in which the oxygen amount is driven by the pressure and the temperature. Pressures in the order of 60 GPa lead to high oxygen ratios, which prevent carbon atoms to get four carbon neighbors (the first condition to get a diamond structure). But a pressure lowering leads to a substantial carbon enrichment through CO2/CO release and facilitates the formation of pure sp3-carbon phases where diamond precursors can form. These results give new insights on the conditions leading to nanodiamonds during the detonation of carbon-rich high explosives.