Carbon Dots-Decorated Carbon-Based Metal-Free Catalysts for Electrochemical Energy Storage.
Danlian HuangYashi ChenMin ChengLei LeiSha ChenWenjun WangXigui LiuPublished in: Small (Weinheim an der Bergstrasse, Germany) (2020)
In the past ten years, carbon dots-decorated, carbon-based, metal-free catalysts (CDs-C-MFCs) have become the fastest-growing branch in the metal-free materials for energy storage field. However, the further development of CDs-C-MFCs needs to clear up the electronic transmission mechanism rather than primarily relying on trial-and-error approaches. This review presents systematically and comprehensively for the first time the latest advances of CDs-C-MFCs in supercapacitors and metal-air batteries. The structure-performance relationship of these materials is carefully discussed. It is indicated that carbon dots (CDs) can act as the electron-rich regions in CDs-C-MFCs owing to their unique properties, such as quantum confinement effects, abundant defects, countless functional groups, etc. More importantly, specific doping can effectively modify the charge/spin distribution and then facilitate electron transfer. In addition, present challenges and future prospects of the CDs-C-MFCs are also given.