Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films.
Bo-Tau LiuKuan-Han WuRong-Ho LeePublished in: Nanoscale research letters (2016)
In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm(-2), reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs.