Login / Signup

Boosting Energy Storage Performance of Lead-Free Ceramics via Layered Structure Optimization Strategy.

Fei YanHairui BaiGuanglong GeJinfeng LinKun ZhuGuohui LiJin QianBo ShenJiwei ZhaiZhifu Liu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Owing to the current global scenario of environmental pollution and the energy crisis, the development of new dielectrics using lead-free ceramics for application in advanced electronic and energy storage systems is essential because of the high power density and excellent stability of such ceramics. Unfortunately, most of them have low breakdown strength and/or low maximum polarization, resulting in low energy density and efficiency. To overcome this limitation here, lead-free ceramics comprising a layered structure are designed and fabricated. By optimizing the distribution of the layered structure, a large maximum polarization and high applied electric field (>500 kV cm -1 ) can be achieved; these result in an ultrahigh recoverable energy storage density (≈7 J cm -3 ) and near ideal energy storage efficiency (≈95%). Furthermore, the energy storage performance without obvious deterioration over a broad range of operating frequencies (1-100 Hz), working temperatures (30-160 °C), and fatigue cycles (1-10 4 ). In addition, the prepared ceramics exhibit extremely high discharge energy density (4.52 J cm -3 ) and power density (405.50 MW cm -3 ). Here, the results demonstrate that the strategy of layered structure design and optimization is promising for enhancing the energy storage performance of lead-free ceramics.
Keyphrases
  • public health
  • heavy metals
  • magnetic resonance
  • gold nanoparticles
  • risk assessment
  • highly efficient
  • computed tomography
  • physical activity
  • magnetic resonance imaging
  • depressive symptoms
  • human health