Sensory attenuation from action observation.
Mark ScottPublished in: Experimental brain research (2022)
A central claim of many embodied approaches to cognition is that understanding others' actions is achieved by covertly simulating the observed actions and their consequences in one's own motor system. If such a simulation occurs, it may be accomplished through forward models, a component of the motor system already known to perform simulations of actions and their consequences in order to support sensory-monitoring of one's own actions. Forward-model simulations cause an attenuation of sensory intensity, so if the simulations hypothesized by embodied cognition are indeed provided by forward models, then action observation should trigger this sensory attenuation. To test this hypothesis, the experiments reported here measured the perceived intensity of a touch sensation on the finger when participants observed an active touch (a finger reaching to touch a ball) vs. a passive touch (a ball rolling to touch an unmoving finger). The touch sensation was perceived as less intense during observation of active touch in comparison with observation of passive touch, providing evidence that forward models are indeed engaged during action observation. The strength of this sensory attenuation is compared and contrasted with a well-established sensory-amplification effect caused by visual attention. This sensory-amplification effect has not generally been considered in studies related to sensory attenuation in action observation, which may explain conflicting results reported in the field.