Toward the Commercialization of Perovskite Solar Modules.
Pengchen ZhuChuanlu ChenJiaqi DaiYuzhen ZhangRuiqi MaoShangshang ChenJinsong HuangJia ZhuPublished in: Advanced materials (Deerfield Beach, Fla.) (2024)
Perovskite (PVSK) photovoltaic (PV) devices are undergoing rapid development and have reached a certified power conversion efficiency (PCE) of 26.1% at the cell level. Tremendous efforts in material and device engineering have also increased moisture, heat, and light-related stability. Moreover, the solution-process nature makes the fabrication process of perovskite photovoltaic devices feasible and compatible with some mature high-volume manufacturing techniques. All these features render perovskite solar modules (PSMs) suitable for terawatt-scale energy production with a low levelized cost of electricity (LCOE). In this review, the current status of perovskite solar cells (PSCs) and modules and their potential applications are first introduced. Then critical challenges are identified in their commercialization and propose the corresponding solutions, including developing strategies to realize high-quality films over a large area to further improve power conversion efficiency and stability to meet the commercial demands. Finally, some potential development directions and issues requiring attention in the future, mainly focusing on further dealing with toxicity and recycling of the whole device, and the attainment of highly efficient perovskite-based tandem modules, which can reduce the environmental impact and accelerate the LCOE reduction are put forwarded.