Login / Signup

Aberrant Brain Functional Connectivity Strength and Effective Connectivity in Patients with Type 2 Diabetes Mellitus.

Xi GuoSu WangYu-Chen ChenHeng-Le WeiGang-Ping ZhouYu-Sheng YuXin-Dao YinKun WangHong Zhang
Published in: Journal of diabetes research (2021)
Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.
Keyphrases