Login / Signup

Effect of host fruit, temperature and Wolbachia infection on survival and development of Ceratitis capitata immature stages.

Niki K DionysopoulouStella A PapanastasiouGeorgios A KyritsisNikolaos T Papadopoulos
Published in: PloS one (2020)
The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasions promoted by the growth and development of international fruit trade. Hence, survival of immatures within infested fruit that are subjected to various conditions during transportation seems to be a crucial feature that promotes invasion success. Wolbachia pipientis is a common endosymbiont of insects and other arthropods generating several biological effects on its hosts. Existing information report the influence of Wolbachia on the fitness traits of insect host species, including the Mediterranean fruit fly. However, little is known regarding effects of Wolbachia infection on immature development in different host fruits and temperatures. This study was conducted to determine the development and survival of immature stages of four different Mediterranean fruit fly populations, either infected or uninfected with Wolbachia, in two hosts (apples, bitter oranges) under three constant temperatures (15, 25 and 30°C), constant relative humidity (45-55 ± 5%), and a photoperiod of 14L:10D. Our findings demonstrate both differential response of two fruit fly lines to Wolbachia infection and differential effects of the two Wolbachia strains on the same Mediterranean fruit fly line. Larva-to-pupa and larva-to-adult survival followed similar patterns and varied a lot among the four medfly populations, the two host fruits and the different temperatures. Pupation rates and larval developmental time were higher for larvae implanted in apples compared to bitter oranges. The survival rates of wildish medflies were higher than those of the laboratory adapted ones, particularly in bitter oranges. The Wolbachia infected medflies, expressed lower survival rates and higher developmental times, especially the wCer4 infected line. High temperatures constrained immature development and were lethal for the Wolbachia infected wCer4 medfly line. Lower temperatures inferred longer developmental times to immature stages of all medfly populations tested, in both host fruits. Implications on the ecology and survival of the fly in nature are discussed.
Keyphrases
  • aedes aegypti
  • dengue virus
  • zika virus
  • drosophila melanogaster
  • free survival
  • physical activity
  • body composition
  • escherichia coli
  • genome wide