3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks.
Gyeong Won LeeAjeesh ChandrasekharanSubhadeep RoyAkash ThamarappalliBinapani MahalingHyeseon LeeKeum-Yong SeongSourabh GhoshSeung Yun YangPublished in: Biofabrication (2024)
3D bioprinting has the potential for the rapid and precise engineering of hydrogel constructs that can mimic the structural and optical complexity of a healthy cornea. However, the use of existing light-activated bioinks for corneal printing is limited by their poor cytocompatibility, use of cytotoxic photoinitiators (PIs), low photo-crosslinking efficiency, and opaque/colored surface of the printed material. Herein, we report a fast-curable, non-cytotoxic, optically transparent bioprinting system using a new water-soluble benzoyl phosphinate-based PI and photocrosslinkable methacrylated hyaluronic acid (HAMA). Compared with commercially available PIs, the newly developed PI, lithium benzoyl (phenyl) phosphinate (BP), demonstrated increased photoinitiation efficiency under visible light and low cytotoxicity. Using a catalytic amount of BP, the HA-based bioinks quickly formed 3D hydrogel constructs under low-energy visible-light irradiation (405 nm, <1 J cm -2 ). The mechanical properties and printability of photocurable bioinks were further improved by blending low (10 kDa) and high (100 kDa) molecular weight (MW) HAMA by forming multilength networks. For potential applications as corneal scaffolds, stromal cell-laden dome-shaped constructs were fabricated using MW-blended HAMA/BP bioink and a digital light processing printer. The HA-based photocurable bioinks exhibited good cytocompatibility (80%-95%), fast curing kinetics (<5 s), and excellent optical transparency (>90% in the visible range), potentially making them suitable for corneal tissue engineering.