Login / Signup

Time-Domain Vibrational Action Spectroscopy of Cryogenically Cooled, Messenger-Tagged Ions Using Ultrafast IR Pulses.

Liangyi ChenJessika L S DeanJoseph A Fournier
Published in: The journal of physical chemistry. A (2021)
Herein, we present the initial steps toward developing a framework that will enable the characterization of photoinitiated dynamics within large molecular ions in the gas phase with temporal and energy resolution. We combine the established techniques of tag-loss action spectroscopy on cryogenically trapped molecular ions with ultrafast vibrational spectroscopy by measuring the linear action spectrum of N2-tagged protonated diglycine (GlyGlyH+·N2) with an ultrafast infrared (IR) pulse pair. The presented time-domain data demonstrate that the excited-state vibrational populations in the tagged parent ions are modulated by the ultrafast IR pulse pair and encoded through the messenger tag-loss action response. The Fourier transform of the time-domain action interferograms yields the linear frequency-domain vibrational spectrum of the ion ensemble, and we show that this spectrum matches the linear spectrum collected in a traditional manner using a frequency-resolved IR laser. Time- and frequency-domain interpretations of the data are considered and discussed. Finally, we demonstrate the acquisition of nonlinear signals through cross-polarization pump-probe experiments. These results validate the prerequisite first steps of combining tag-loss action spectroscopy with two-dimensional IR spectroscopy for probing dynamics in gas-phase molecular ions.
Keyphrases