Login / Signup

Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.

Valentin Vassilev-GalindoGregory FonsecaIgor PoltavskyAlexandre Tkatchenko
Published in: The Journal of chemical physics (2021)
Dynamics of flexible molecules are often determined by an interplay between local chemical bond fluctuations and conformational changes driven by long-range electrostatics and van der Waals interactions. This interplay between interactions yields complex potential-energy surfaces (PESs) with multiple minima and transition paths between them. In this work, we assess the performance of the state-of-the-art Machine Learning (ML) models, namely, sGDML, SchNet, Gaussian Approximation Potentials/Smooth Overlap of Atomic Positions (GAPs/SOAPs), and Behler-Parrinello neural networks, for reproducing such PESs, while using limited amounts of reference data. As a benchmark, we use the cis to trans thermal relaxation in an azobenzene molecule, where at least three different transition mechanisms should be considered. Although GAP/SOAP, SchNet, and sGDML models can globally achieve a chemical accuracy of 1 kcal mol-1 with fewer than 1000 training points, predictions greatly depend on the ML method used and on the local region of the PES being sampled. Within a given ML method, large differences can be found between predictions of close-to-equilibrium and transition regions, as well as for different transition mechanisms. We identify key challenges that the ML models face mainly due to the intrinsic limitations of commonly used atom-based descriptors. All in all, our results suggest switching from learning the entire PES within a single model to using multiple local models with optimized descriptors, training sets, and architectures for different parts of the complex PES.
Keyphrases