Direct Liquid to Crystal Transition in a Quasi-Two-Dimensional Colloidal Membrane.
Thomas GibaudDoru ConstantinPublished in: The journal of physical chemistry letters (2018)
Using synchrotron-based small-angle X-ray scattering, we study rigid fd viruses assembled into isolated monolayers from mixtures with a nonabsorbing polymer, which acts as an osmotic agent. As the polymer concentration increases, we observe a direct liquid to crystal transition, without an intermediate hexatic phase, in contrast with many other similar systems, such as concentrated DNA phases or packings of surfactant micelles. We tentatively attribute this effect to the difference in stiffness. The liquid phase can be well described by a hard-disk fluid, while we model the crystalline one as a hexagonal harmonic lattice and we evaluate its elastic constants.