Login / Signup

A high-index facet gold 12 tip nanostar for an improved electrocatalytic alcohol oxidation reaction with superior CO tolerance.

Sanjeevan RajagopalSuresh ThanguduKuo-Chu Hwang
Published in: Nanoscale (2023)
Direct alcohol fuel cells have a long and promising future, which will require the development of highly active electrocatalysts for alcohol electrooxidation reactions. To this end, high-index facet nanomaterial-based electrocatalysts provide significant promise for the successful oxidation of alcohols. However, the fabrication and exploration of high-index facet nanomaterials are seldom reported, especially in electrocatalytic applications. Herein, we successfully synthesized a high index facet {711} Au 12 tip nanostructure for the first time using a single-chain cationic TDPB surfactant. Electrooxidation results demonstrate that a {711} high-index facet Au 12 tip exhibited much higher electrocatalytic activity (∼10-fold higher) than the {111} low-index facet Au nanoparticles (Au NPs) without being poisoned by CO under identical conditions. Besides, Au 12 tip nanostructures offer appreciable stability and durability. The high electrocatalytic activity with excellent CO tolerance is due to the spontaneous adsorption of the negatively charged -OH on the high-index facet Au 12 tip nanostars, as evidenced by the isothermal titration calorimetry (ITC) analysis. Our findings suggest that high-index facet Au nanomaterials are ideal candidate electrode materials for the electrooxidation reaction of ethanol in fuel cells.
Keyphrases
  • reduced graphene oxide
  • sensitive detection
  • cell proliferation
  • oxidative stress
  • machine learning
  • cell cycle arrest
  • visible light