Login / Signup

Perceptions of fatigue and neuromuscular measures of performance fatigability during prolonged low-intensity elbow flexions.

Monica MarzoukDaniel J MckeownDavid N BorgJonathon HeadrickJustin J Kavanagh
Published in: Experimental physiology (2023)
The purpose of this study was to determine the relationship between transcranial magnetic stimulation (TMS) measures of performance fatigability and commonly used scales that quantify perceptions of fatigue during exercise. Twenty healthy participants (age 23 ± 3 years, 10 female) performed 10 submaximal isometric elbow flexions at 20% maximal voluntary contraction (MVC) for 2 min, separated by 45 s of rest. Biceps brachii muscle electromyography and elbow flexion torque responses to single-pulse TMS were obtained at the end of each contraction to assess central factors of performance fatigability. A rating of perceived exertion (RPE) scale, Omnibus Resistance scale, Likert scale, Rating of Fatigue scale and a visual analogue scale (VAS) were used to assess perceptions of fatigue at the end of each contraction. The RPE (root mean square error (RMSE) = 0.144) and Rating of Fatigue (RMSE = 0.145) scales were the best predictors of decline in MVC torque, whereas the Likert (RMSE= 0.266) and RPE (RMSE= 0.268) scales were the best predictors of electromyographic amplitude. Although the Likert (RMSE = 7.6) and Rating of Fatigue (RMSE = 7.6) scales were the best predictors of voluntary muscle activation of any scale, the number of contractions performed during the protocol was a better predictor (RMSE = 7.3). The ability of the scales to predict TMS measures of performance fatigability were in general similar. Interestingly, the number of contractions performed was a better predictor of TMS measures than the scales themselves.
Keyphrases