Login / Signup

Hosts do not simply outsource pathogen resistance to protective symbionts.

Jan HrčekBenjamin J ParkerAilsa H C McLeanJean-Christophe SimonCiara M MannH Charles J Godfray
Published in: Evolution; international journal of organic evolution (2018)
Microbial symbionts commonly protect their hosts from natural enemies, but it is unclear how protective symbionts influence the evolution of host immunity to pathogens. One possibility is that 'extrinsic' protection provided by symbionts allows hosts to reduce investment in 'intrinsic' immunological resistance mechanisms. We tested this idea using pea aphids (Acyrthosiphon pisum) and their facultative bacterial symbionts that increase host resistance to the fungal pathogen Pandora neoaphidis. The pea aphid taxon is composed of multiple host plant associated populations called biotypes, which harbor characteristic communities of symbionts. We found that biotypes that more frequently carry protective symbionts have higher, rather than lower, levels of intrinsic resistance. Within a biotype there was no difference in intrinsic resistance between clones that did and did not carry a protective symbiont. The host plant on which an aphid feeds did not strongly influence intrinsic resistance. We describe a simple conceptual model of the interaction between intrinsic and extrinsic resistance and suggest that our results may be explained by selection favoring both the acquisition of protective symbionts and enhanced intrinsic resistance in habitats with high pathogen pressure. Such combined protection is potentially more robust than intrinsic resistance alone.
Keyphrases
  • candida albicans
  • microbial community
  • multidrug resistant
  • antimicrobial resistance
  • gram negative
  • genetic diversity