Login / Signup

Screening and Characterization of Novel Polyesterases from Environmental Metagenomes with High Hydrolytic Activity against Synthetic Polyesters.

Mahbod HajighasemiAnatoli TchigvintsevBoguslaw NocekRobert FlickAna PopovicTran HaiAnna N KhusnutdinovaGreg BrownXiaohui XuHong CuiJulia AnstettTatyana N ChernikovaThomas BrülsDenis Le PaslierMichail M YakimovAndrzej JoachimiakOlga V GolyshinaAlexei SavchenkoPeter N GolyshinElizabeth A EdwardsAlexander F Yakunin
Published in: Environmental science & technology (2018)
The continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters. These include the metagenomic esterases MGS0156 and GEN0105, which hydrolyzed polylactic acid (PLA), polycaprolactone, as well as bis(benzoyloxyethyl)-terephthalate. With solid PLA as a substrate, both enzymes produced a mixture of lactic acid monomers, dimers, and higher oligomers as products. The crystal structure of MGS0156 was determined at 1.95 Å resolution and revealed a modified α/β hydrolase fold, with a lid domain and highly hydrophobic active site. Mutational studies of MGS0156 identified the residues critical for hydrolytic activity against both polyester and monoester substrates, with two-times higher polyesterase activity in the MGS0156 L169A mutant protein. Thus, our work identified novel, highly active polyesterases in environmental metagenomes and provided molecular insights into their activity, thereby augmenting our understanding of enzymatic polyester hydrolysis.
Keyphrases
  • human health
  • risk assessment
  • heavy metals
  • nitric oxide
  • microbial community
  • ionic liquid
  • single molecule
  • room temperature
  • hydrogen peroxide
  • wastewater treatment
  • aqueous solution