Login / Signup

Metal Vacancy Ordering in an Antiperovskite Resulting in Two Modifications of Fe2 SeO.

Martin ValldorTaylor WrightAndrew FitchYurii Prots
Published in: Angewandte Chemie (International ed. in English) (2016)
Small, red Fe2 SeO single crystals in two modifications were obtained from a CsCl flux. The metastable α-phase is pseudo-tetragonal (Cmce, a=16.4492(8) Å, b=11.1392(4) Å, c=11.1392(4) Å), whereas the β-phase is trigonal (P31 , a=9.8349(4) Å, c=6.9591(4) Å)) and thermodynamically stable within a narrow temperature range. Both crystal structures were solved from twinned specimens. The enantiomers of the β-phase appear as racemic mixtures. Selenium and oxygen form two individual interpenetrating primitive cubic lattices, giving a bcc packing. A quasi-octahedrally coordinated iron atom is found close to the center of each surface of the selenium sublattice. The difference between the α- and β-phases is the distribution of iron at 2/3 of the surfaces. α- and β-Fe2 SeO are comparable with metal-vacancy-ordered antiperovskites. Each Fe/O lattice can also be described in terms of vertex-sharing OFe4 tetrahedra, with a crystal structure similar to that of an antisilicate. Iron is divalent and has a high-spin d(6) (S=2) configuration. The β-phase exhibits magnetoelectric coupling.
Keyphrases
  • crystal structure
  • room temperature
  • healthcare
  • escherichia coli
  • cystic fibrosis
  • aqueous solution