One-Step Construction of Multi-Walled CNTs Loaded with Alpha-Fe2O3 Nanoparticles for Efficient Photocatalytic Properties.
Jianle XuQiang WenXiao ZhangYinhui LiZeyue CuiPengwei LiChunxu PanPublished in: Materials (Basel, Switzerland) (2021)
The aggregation and the rapid restructuring of the photoinduced electron-hole pairs restructuring in the process of photoelectric response remains a great challenge. In this study, a kind of Multi-walled carbon nanotubes loaded Alpha-Fe2O3 (CNTs/α-Fe2O3) heterostructure composite is successfully prepared via the one-step method. Due to the synergistic effect in the as-prepared CNTs/α-Fe2O3, the defect sites and oxygen-containing functional groups of CNTs can dramatically improve the interface charge separation efficiency and prevent the aggregation of α-Fe2O3. The improved photocurrent and enhanced hole-electron separation rate in the CNTs/α-Fe2O3 is obtained, and the narrower band gap is measured to be 2.8 ev with intensive visible-light absorption performance. Thus, the CNTs/α-Fe2O3 composite serves as an excellent visible light photocatalyst and exhibits an outstanding photocatalytic activity for the cationic dye degradation of rhodamine B (RhB). This research supplies a fresh application area forα-Fe2O3 photocatalyst and initiates a new approach for design of high efficiency photocatalytic materials.