Login / Signup

Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter.

Joonha ParkEdward L Ionides
Published in: Statistics and computing (2020)
We propose a method for inference on moderately high-dimensional, nonlinear, non-Gaussian, partially observed Markov process models for which the transition density is not analytically tractable. Markov processes with intractable transition densities arise in models defined implicitly by simulation algorithms. Widely used particle filter methods are applicable to nonlinear, non-Gaussian models but suffer from the curse of dimensionality. Improved scalability is provided by ensemble Kalman filter methods, but these are inappropriate for highly nonlinear and non-Gaussian models. We propose a particle filter method having improved practical and theoretical scalability with respect to the model dimension. This method is applicable to implicitly defined models having analytically intractable transition densities. Our method is developed based on the assumption that the latent process is defined in continuous time and that a simulator of this latent process is available. In this method, particles are propagated at intermediate time intervals between observations and are resampled based on a forecast likelihood of future observations. We combine this particle filter with parameter estimation methodology to enable likelihood-based inference for highly nonlinear spatiotemporal systems. We demonstrate our methodology on a stochastic Lorenz 96 model and a model for the population dynamics of infectious diseases in a network of linked regions.
Keyphrases
  • infectious diseases
  • single cell
  • machine learning
  • deep learning
  • convolutional neural network