Login / Signup

The role of methylation in the copper(ii) coordination properties of a His-containing decapeptide.

Alexandre HautierTiago CarvalhoDaniela ValensinA Jalila SimaanBruno FaurePedro MateusRita DelgadoOlga Iranzo
Published in: Dalton transactions (Cambridge, England : 2003) (2019)
N-Methylation of the peptide amide bond has proven to be a powerful strategy to fine-tune the conformation and properties of peptides. In this context and for the first time, we show that N-methylation can also be used to control the copper(ii) coordination properties of peptides and stabilize at high pH values the copper(ii) species lacking amidate coordination. Namely, we have prepared a derivative of the O-Asp peptide where the copper(ii) coordinating amino acids, i.e. Asp and His residues, were N-methylated (ONMe-Asp). A combined study using potentiometric and spectroscopic (UV-Vis, CD, EPR and NMR) techniques indicates the formation of the wanted major species, [CuH(ONMe-Asp)]2+, where copper(ii) is bound to His4(Nε), His7(Nε), His9(Nε) and Asp2(COO-). With respect to the parent non-methylated O-Asp peptide, [CuH(ONMe-Asp)]2+ is stable at higher pH values but has lower affinity for copper(ii). Additionally, electrochemical studies reveal a Cu(ii) ⇌ Cu(i) redox process with a larger cathodic and anodic peak separation. Species containing copper(ii) coordinating amidates were not observed for this ONMe-Asp peptide.
Keyphrases
  • oxide nanoparticles
  • genome wide
  • dna methylation
  • amino acid
  • magnetic resonance
  • gold nanoparticles
  • gene expression
  • ionic liquid
  • molecular dynamics simulations
  • liquid chromatography
  • solid state