Stabilizing High Density Cu Active Sites with ZrO 2 Quantum Dots as Chemical Ligand in N-doped Porous Carbon Nanofibers for Efficient ORR.
Yue QiaoYuanyuan ZhangShuhui XiaChaolong WeiYuehui ChenShuo ChenJianhua YanPublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
The emerging transition metal-nitrogen-carbon (MNC) materials are considered as a promising oxygen reduction reaction (ORR) catalyst system to substitute expensive Pt/C catalysts due to their high surface area and potential high catalytic activity. However, MNC catalysts are easy to be attacked by the ORR byproducts that easily lead to the deactivation of metal active sites. Moreover, a high metal loading affects the mass transfer and stability, but a low loading delivers inferior catalytic activity. Here, a new strategy of designing ZrO 2 quantum dots and N-complex as dual chemical ligands in N-doped bubble-like porous carbon nanofibers (N-BPCNFs) to stabilize copper (Cu) by forming CuZrO 3-x /ZrO 2 heterostructures and CuN ligands with a high loading of 40.5 wt.% is reported. While the highly porous architecture design of N-BPCNFs builds a large solidelectrolytegas phase interface and promotes mass transfer. The preliminary results show that the half-wave potential of the catalyst reaches 0.856 V, and only decreases 0.026 V after 10 000 cycles, exhibiting excellent stability. The proposed strategy of stabilizing metal active sites with both heterostructures and CuN ligands is feasible and scalable for developing high metal loading ORR catalyst.