Heat-Killed Lactobacillus reuteri GMNL-263 Inhibits Systemic Lupus Erythematosus-Induced Cardiomyopathy in NZB/W F1 Mice.

Yu-Lan YehMin-Chi LuBruce Chi-Kang TsaiBor-Show TzangShiu-Min ChengXiaoyong ZhangLiang-Yo YangB MahalakshmiWei-Wen KuoPeng XiangChih-Yang Huang
Published in: Probiotics and antimicrobial proteins (2021)
It has been increasingly recognized that accelerated atherosclerosis is a major cause of morbidity and mortality in patients with systemic lupus erythematosus, a multisystem autoimmune disease. In this study, we investigated the anti-apoptotic effects of heat-killed Lactobacillus reuteri GMNL-263 on the cardiac tissue of NZB/W F1 mice. The myocardial architecture of the mice heart was observed and evaluated using different staining techniques such as hematoxylin and eosin, TUNEL assay, Masson's trichrome, and fluorescent immunohistochemistry. Additionally, the probiotics-related pathway proteins were analyzed via western blot analysis. Our results showed prevention of enlarged interstitial spaces and abnormal myocardial structures in the hearts of NZB/W F1 mice with L. reuteri GMNL-263 feeding. Significant reduction in TUNEL-positive cells, Fas death receptor-related components, and apoptosis was also detected in the cardiac tissues of the NZB/W F1 mice after L. reuteri GMNL-263 feeding compared with the control group. These findings are the first to reveal the protective effects of L. reuteri GMNL-263 against cardiac abnormalities in NZB/W F1 mice and suggest the potential clinical applications of L. reuteri GMNL-263 in the treatment of SLE-related cardiovascular diseases.