Login / Signup

Adsorption of β-Lactoglobulin on Thiol-Functionalized Mesoporous Silica.

Laroussi ChaabaneCamille LoupiacFrédéric BouyerIgor BezverkhyySarah FoleyAli Assifaoui
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
SBA-15 mesoporous materials were synthesized with different pore sizes (5 and 10 nm) and thiol-functionalized groups and then characterized to describe their ability to differentially adsorb β-lactoglobulin (BLG), a globular protein with an ellipsoid shape measuring 6.9 nm in length and 3.6 nm in width. All adsorption experiments showed that the adsorption capacities of mesoporous materials for BLG were dependent on the duration of contact between the two materials (mesoporous material and BLG) and the initial BLG concentration. It was also shown that the pore sizes and thiol groups of SBA-15-based adsorbents are important factors for the BLG adsorption capacities. Among the tested adsorbents, thiol-functionalized SBA-15 with a 10 nm pore size (SBA-15-SH-10) showed the highest adsorption capacity (0.560 g·g -1 ) under optimal experimental conditions. Kinetics studies demonstrated that the adsorption occurs predominantly inside the pores, with interactions occurring on heterogeneous surfaces. In addition, the thermodynamic parameters indicate a spontaneous and exothermic behavior of the BLG adsorption process onto the thiol-functionalized SBA-15 mesoporous adsorbent. Finally, the characterization of the SBA-15-SH-10 adsorbent at 308 K showed the occurrence of an oxidation reaction of the thiol groups to sulfonate groups during the adsorption process as confirmed by Raman spectroscopy. The spectra recorded after adsorption of the protein showed that this adsorption did not affect the secondary structure of the protein.
Keyphrases