Login / Signup

Albumin-Consolidated AIEgens for Boosting Glioma and Cerebrovascular NIR-II Fluorescence Imaging.

Duyang GaoYaxi LiYayun WuYu LiuDehong HuSimin LiangJiuling LiaoMin PanPengfei ZhangKai LiXin LiuHairong ZhengZonghai Sheng
Published in: ACS applied materials & interfaces (2022)
The application of an exogenous polymer matrix to construct aggregation-induced emission (AIE) nanoprobes promotes the utility of AIE luminogens (AIEgens) in diagnosing brain diseases. However, the limited fluorescence (FL) and low active-targeting abilities of AIE-based nanoprobes impede their imaging application. Here, we employed endogenous albumin as an effective matrix to encapsulate AIEgens to enhance FL quantum yield (QY) and active-targeting ability. The albumin-consolidated strategy effectively inhibited the intramolecular vibration of AIEgens and enhanced endocytosis mediated by the gp60 receptor. The QYs of three kinds of albumin-based AIE nanoprobes with FL emissions ranging from the visible (400-650 nm) to the second near-infrared (NIR-II, 1000-1700 nm) region was at least 10% higher, and the tumor-targeting efficiency was ∼25% higher, compared with those of nanoprobes constructed by the exogenous polymer. Albumin-based AIE nanoprobes have achieved active-targeting NIR-II imaging of brain tumors and cerebrovascular imaging with a high signal-to-background ratio (SBR, ∼90) and high resolution (∼70 μm) in mouse models. Therefore, the albumin-based AIE nanoprobes will enable FL imaging-guided surgery of brain tumors and cerebral ischemia, which will improve surgical efficacy to prevent recurrence and side effects.
Keyphrases