Thioredoxin-like2/2-Cys peroxiredoxin redox cascade acts as oxidative activator of glucose-6-phosphate dehydrogenase in chloroplasts.
Keisuke YoshidaEriko UchikoshiSatoshi HaraToru HisaboriPublished in: The Biochemical journal (2019)
Thiol-based redox regulation is crucial for adjusting chloroplast functions under fluctuating light environments. We recently discovered that the thioredoxin-like2 (TrxL2)/2-Cys peroxiredoxin (2CP) redox cascade supports oxidative thiol modulation by using hydrogen peroxide (H2O2) as an oxidizing force. This system plays a key role in switching chloroplast metabolism (e.g. Calvin-Benson cycle) during light to dark transitions; however, information on its function is still limited. In this study, we report a novel protein-activation mechanism based on the TrxL2/2CP redox cascade. Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the oxidative pentose phosphate pathway (OPPP). Biochemical studies, including redox state determination and measurement of enzyme activity, suggested that the TrxL2/2CP pathway is involved in the oxidative activation of G6PDH. It is thus likely that the TrxL2/2CP redox cascade shifts chloroplast metabolism to night mode by playing a dual role, namely, down-regulation of the Calvin-Benson cycle and up-regulation of OPPP. G6PDH was also directly oxidized and activated by H2O2, particularly when H2O2 concentration was elevated. Therefore, G6PDH is thought to be finely tuned by H2O2 levels in both direct and indirect manners.