Login / Signup

Preparation and Characterization of Nanofibrous Scaffolds of Ag/Vanadate Hydroxyapatite Encapsulated into Polycaprolactone: Morphology, Mechanical, and In Vitro Cells Adhesion.

Hany El-HamsharyMehrez E El-NaggarMatti HaukkaMouhamed A Abu-SaiedMohamed K AhmedMosaed Al-Sahly
Published in: Polymers (2021)
Series of nanofibrous composites of polycaprolactone (PCL) were fabricated in different compositions of modified hydroxyapatite (HAP). The encapsulated HAP was co-doped with Ag/vanadate ions at different Ag contributions. XRD and FTIR techniques confirmed the powder and fibrous phase formation. Further, the morphological and mechanical behaviors of the electrospun nanofibrous scaffolds containing hydroxyapatite were investigated. The nanofibrous phases were biologically evaluated via studying contact angle, antibacterial, cell viability, and in vitro growth of human fibroblasts cell line (HFB4). It is obvious that silver ions cause gradual deviation in powder grains from wafer-like to cloudy grains. The maximum height of the roughness (Rt) ranged from 902.0 to 956.9 nm, while the valley depth of the roughness (Rv) ranged from 308.3 to 442.8 nm, for the lowest and the highest additional Ag ions for powdered phases. Moreover, the highest contribution of silver through the nanofibrous phases leads to the formation of lowest filaments size ranged from 0.07 to 0.53 µm. Further, the fracture strength was increased exponentially from 2.51 ± 0.35 MPa at zero concentration of silver ions up to 4.23 ± 0.64 MPa at 0.6 Ag/V-HAP@PCL. The fibrous phases were biologically evaluated in terms of antibacterial, cell viability, and in vitro growth of human fibroblasts cell line (HFB4). The nanofibrous composition of 0.8 Ag/V-HAP@PCL reached the maximum potential against E. coli and S. aureus and recorded 20.3 ± 1.1 and 19.8 ± 1.2 mm, respectively. This significant performance of the antibacterial activity and cell viability of co-doped HAP distributed through PCL could recommend these compositions for more research in biological applications, including wound healing.
Keyphrases