Login / Signup

Environmentally Adaptable and Temperature-Selective Self-Healing Polymers.

Sung Hwan JuJin Chul KimSeung Man NohIn Woo Cheong
Published in: Macromolecular rapid communications (2018)
Development of polymeric materials capable of self-healing at low temperatures is an important issue since their mechanical strength and self-healing performance are often in conflict with each other. Herein, random copolymers with self-healing capability in a wide temperature range prepared from 2-(dimethylamino)ethyl methacrylate (DMAEMA), glyceryl monomethacrylate (GlyMA), and butyl methacrylate monomers via free-radical polymerization and subsequent cross-linking with hexamethylene diisocyanate are reported. Wound closure is facilitated by swelling below the lower critical solution temperature or by heating above the glass transition temperature (T g ) of the polymer. GlyMA units form metal-ligand coordination complexes with dibutyltin dilaurate, leading to the formation of new carbonate bonds under ambient CO2 and H2 O conditions. Although swelling/heating reduces the polymer's mechanical strength, it is fully restored following chemical re-bonding/drying at room temperature. The swelling and degree of scratch healing are affected by pH, temperature, and the DMAEMA content.
Keyphrases
  • room temperature
  • air pollution
  • drug delivery
  • transition metal