Login / Signup

Establishing Halogen-Bond Preferences in Molecules with Multiple Acceptor Sites.

Amila M AbeysekeraBoris B AverkievAbhijeet S SinhaPierre Le MagueresChrister B Aakeröy
Published in: ChemPlusChem (2021)
The interplay between hydrogen bonds (HBs) and halogen bonds (XBs), has been addressed by co-crystallizing two halogen bond donors, 1,4-diiodotetrafluorbenzene(DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene(TITFB) with four series of targets; N-(pyridin-2-yl)benzamide (Bz-X), N-(pyridin-2-yl)picolinamides (2Pyr-X), N-(pyridin-2-yl)nicotinamides (3Pyr-X), N-(pyridin-2-yl)isonicotinamides (4Pyr-X); X=H/Cl/Br/I. The structural outcomes were compared with interactions in the targets themselves. 13 co-crystals were analysed by single-crystal X-ray diffraction (SCXRD). In all three co-crystals from the 2Pyr series, the intramolecular HB remained intact while the XB donors engaged with the N(pyr) or O=C sites. In the ten co-crystals from the other three series, the intermolecular HBs present in the individual targets were disrupted in 9/10 cases. Overall, the acceptor sites selected by the halogen-bond donors in these targets were distributed as follows; N(pyr)=81 %, O=C (15 %) or π (4 %).
Keyphrases
  • energy transfer
  • room temperature
  • kidney transplantation
  • transition metal
  • high resolution
  • magnetic resonance imaging
  • magnetic resonance
  • weight loss
  • glycemic control
  • contrast enhanced