Login / Signup

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization.

Dongjin ChoiJun-Gi JangU Kang
Published in: PloS one (2019)
How can we extract hidden relations from a tensor and a matrix data simultaneously in a fast, accurate, and scalable way? Coupled matrix-tensor factorization (CMTF) is an important tool for this purpose. Designing an accurate and efficient CMTF method has become more crucial as the size and dimension of real-world data are growing explosively. However, existing methods for CMTF suffer from lack of accuracy, slow running time, and limited scalability. In this paper, we propose S3CMTF, a fast, accurate, and scalable CMTF method. In contrast to previous methods which do not handle large sparse tensors and are not parallelizable, S3CMTF provides parallel sparse CMTF by carefully deriving gradient update rules. S3CMTF asynchronously updates partial gradients without expensive locking. We show that our method is guaranteed to converge to a quality solution theoretically and empirically. S3CMTF further boosts the performance by carefully storing intermediate computation and reusing them. We theoretically and empirically show that S3CMTF is the fastest, outperforming existing methods. Experimental results show that S3CMTF is up to 930× faster than existing methods while providing the best accuracy. S3CMTF shows linear scalability on the number of data entries and the number of cores. In addition, we apply S3CMTF to Yelp rating tensor data coupled with 3 additional matrices to discover interesting patterns.
Keyphrases
  • electronic health record
  • high resolution
  • big data
  • data analysis
  • oxidative stress
  • magnetic resonance
  • magnetic resonance imaging
  • machine learning
  • artificial intelligence
  • mass spectrometry
  • quality improvement