Early life vaccination reprograms the metabolism and function of myeloid cells in neonates.
Yingying ChenHui LiJie ZhouPublished in: Immunology (2024)
Vaccination after birth provides protection against pathogen infection and immune related disorders in healthy children. The detailed effects of vaccination on neonatal immunity, however, remain largely unknown. Here, we reported that vaccination using Bacillus Calmette-Guérin (BCG) diminished the immunosuppressive function of myeloid-derived suppressor cells in neonatal mice, an immature myeloid population. A combination of single-cell transcriptome, metabolite profiling, and functional analysis demonstrated that upregulation of mTOR/HIF1a signalling and the enhanced glycolysis explained the effects of BCG on neonatal myeloid cells. Pharmalogical inhibition of glycolysis or mTOR signalling efficiently rescued the effects of BCG on neonatal myeloid cells. These observations suggest that BCG facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.