Login / Signup

Activation of Water by Thorium Cation: A Guided Ion Beam and Quantum Chemical Study.

Richard M CoxPeter B Armentrout
Published in: Journal of the American Society for Mass Spectrometry (2019)
The reaction of atomic thorium cations with deuterated water as a function of kinetic energy from thermal to 10 eV was studied using guided ion beam tandem mass spectrometry. At thermal energies, both ThO+ + D2 and DThO+ + D are formed in barrierless exothermic processes and reproduce results in the literature obtained using ion cyclotron resonance mass spectrometry. As the energy is increased, the branching ratio between these two channels changes such that the dominant product changes from ThO+ to DThO+ and back to ThO+, until ThD+ + OD is energetically available and is the dominant product channel. To help understand these experimental results, a variety of theoretical approaches were tried and used to establish a potential energy surface, which compares well with previous theoretical studies. Utilizing the theoretical results, the kinetic energy dependent branching ratio between the ThO+ + D2 and DThO+ + D channels was calculated using both RRKM and phase space theory (PST). The results indicate that consideration of angular momentum conservation (as in PST) and spin-orbit corrected energies are needed to reproduce experimental results quantitatively. The PST modeling also provides relative energies for the two competing transition states that lead to the primary products, for which theory provides reasonable agreement. Graphical Abstract Note: This data is.
Keyphrases