Layer-by-layer coating of natural diatomite with silver nanoparticles for identification of circulating cancer protein biomarkers using SERS.
Ayse Mine SaridagMehmet KahramanPublished in: Nanoscale (2023)
Surface-enhanced Raman scattering (SERS) is an emerging spectroscopy technique for detecting and characterizing chemical or biological structures in the vicinity of plasmonic nanostructures. Colloidal, solid, and flexible nanostructures are widely used in SERS experiments to enhance the Raman intensity. The nanostructure used in SERS is one of the main influencing parameters and a growing research area. Fabrication of simple and cheap SERS substrates with a high enhancement factor is desired. In this study, we fabricated a reproducible, cheap, and flexible SERS active strip by coating natural diatomite (biosilica) with silver nanoparticles (AgNPs) using the layer-by-layer assembly method and the fabricated strip is used for the label-free identification of circulating cancer protein biomarkers. SERS active strips were fabricated having different numbers of AgNP layers on natural diatomite and comprehensive characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV/vis absorption spectrophotometry were used. SERS activities of the strips depending on the number of layers were evaluated using 4-aminothiophenol (4-ATP) and rhodamine 6G (Rh6G) molecules. We found that the SERS intensity is strongly dependent on the number of AgNP layers, with the maximum SERS intensity obtained from the strip with 5 layers of AgNPs, having a 2.0 × 10 5 enhancement factor. The strip with the highest SERS activity was used for the label-free identification of circulating cancer protein biomarkers (HER2, CA15-3, PSA, MUC4, and CA27-29). The results demonstrate that the fabricated strip can help in the effective label-free identification of circulating protein biomarkers and open new directions for SERS-based label-free biosensing applications.