Login / Signup

Vertical Differentiation of Microplastics Influenced by Thermal Stratification in a Deep Reservoir.

Mengyu ZhangDongyu XuLinghua LiuYiting WeiBo Gao
Published in: Environmental science & technology (2023)
Microplastics (MPs) are an emerging environmental concern. However, vertical transport of MPs remains unclear, particularly in deep reservoirs with thermal stratification (TS). In this study, the vertical variation in MP organization, stability, migration, and the driving factors of the profile in a deep reservoir were comprehensively explored. This is the first observation that TS interfaces in a deep reservoir act as a buffer area to retard MP subsidence, especially at the interface between the epilimnion and the metalimnion. Interestingly, there was a size-selection phenomenon for MP sinking. In particular, the high accumulation of large-sized MPs (LMPs; >300 μm) indicated that LMPs were more susceptible to dramatic changes in water density at the TS interfaces. Furthermore, simultaneous analysis of water parameters and MP surface characteristics showed that the drivers of MP deposition were biological to abiotic transitions during different layers, which were influenced by algae and metals. Specifically, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and microscopic Fourier transform infrared analyses implied that the occurrence of metals on the MP surface can promote MP deposition in the hypolimnion. Our findings demonstrated that TS significantly influenced the MP fate in deep reservoirs, and the hotspot of MP exposure risk for vulnerable benthic organisms on the reservoir floor deserves more attention.
Keyphrases
  • electron microscopy
  • high resolution
  • human health
  • magnetic resonance imaging
  • multidrug resistant
  • drinking water
  • health risk
  • climate change